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Infinitely Many Contact Process Transitions on a Tree
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We continue our study of the ergodic behavior of the contact process on infinite
connected graphs of bounded degree. Examples are provided of trees on which,
as the infection parameter increases, complete convergence alternates between
holding and failing infinitely many times.
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1. INTRODUCTION

This is a continuation of a study of the behavior of the contact process on
general graphs of bounded degree, initiated in Salzano and Schonmann
(1997) and (1999). The contact process is one of the basic interacting par-
ticle systems [see Liggett (1985), Liggett (1999), or Durrett (1988)]. It can
be described as follows. At each vertex (site) of a graph G there is an
individual which may be healthy or infected with some disease. As time
evolves, infected individuals may recover at rate one, independently of any-
thing else, but each infected individual also infects its neighbors at rate
*>0 independently of anything else.

The contact process is said to survive globally if starting from finitely
many infected vertices, there is a positive probability that the infection will
never disappear from the graph. It is said to survive locally (or recur) if
starting from finitely many infected vertices there is a positive probability
that the infection will recur forever to any vertex of the graph.

A particularly nice behavior that the contact process may have for
some values of * is called complete convergence (cc). This concept will be
defined precisely in the next section, but roughly it means that there are
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only two extremal invariant probability distributions and starting from any
state there is convergence to a certain combination of these two.

Pemantle (1992) conjectured that on any graph once the contact pro-
cess survived locally, it would satisfy cc. For the cubic lattices Zd and the
homogeneous trees Td this is true [see respectively Bezuidenhout and
Grimmett (1990), Zhang (1996) or Salzano and Schonmann (1998)]. But
Salzano and Schonmann (1997) disproved this conjecture and provided
examples of trees with bounded degree on which, as * increases, cc alter-
nates between holding and failing any finite number of times. Here we will
show that the behavior on a graph of bounded degree can be even more
complex, with infinitely many transitions in behavior occuring as *
increases to *c(Z), the critical parameter for the contact on the lattice Z.
[It has been proven in Salzano and Schonmann (1997) that on any infinite
graph of bounded degree, when *>*c(Z), complete convergence holds.]

2. NOTATION AND BACKGROUND

This section can be seen as a summary. Readers who need more details
are invited to read the introduction of Salzano and Schonmann (1997), and
consult Liggett (1985) and Durrett (1988).

2.1. The Graphs

We will denote by G the class of infinite connected graphs of bounded
degree. Given G=(VG , EG) # G, the notation AZVG stands for A being a
finite subset of the set of vertices of G, VG . An arbitrary vertex 0 # VG is
called the root of G. We will measure the distance between sites in VG ,
G # G, by the length of the minimal path along neighboring sites which
joins them. The degree of a vertex x # VG is the number of edges connected
to it.

2.2. The Contact Process

The contact process with infection parameter * started from the con-
figuration A is denoted by (!A

G; *; t)t�0 . The probability of global survival is
denoted by \G(A, *)=P[!A

G; *; t{<, for all t�0]. Similarly the probabil-
ity of local survival or recurrence is denoted by ;G(A, *)=P[!A

G; *; t(0)=1,
infinitely often]. In typical abuses of notation G, A or * may be omitted
from the notation; in the case of A meaning A=[0].

Next we define the corresponding critical points for G:

*s=inf[* : \(*)>0] and *r=inf[* : ;(*)>0]
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These are, respectively, called the survival point and the recurrence point
of contact process on G.

2.3. The Ergodic Behavior of the Contact Process

The lower and the upper invariant measures of the contact process are
respectively $< , the point mass in the empty configuration, and &� , the
invariant measure approached as time goes to infinite when the process
starts with all individuals infected. A classical notion of convergence in dis-
tribution in the study of the contact process is the following:

Complete Convergence (cc). For any AZVG , !A
t O

(1&\(A)) $<+\(A) &� , as t � �.

Before we can summarize some results of Salzano and Schonmann
(1997) and (1999) to be used here, we need to review the following ter-
minology:

The self-duality of the contact process implies that &� (` : ` & A{<)=
\(A). Motivated by this, we introduced in Salzano and Schonmann (1997)
the probability distribution &r , defined by: &r(` : ` & A{<)=P(!A

t (0)=1,
infinitely often)=;(A). We proved there that &r is an extremal invariant
measure. We also defined:

Criterion r=s. &r=&� . Equivalently, for all non-empty AZVG ,
;(A)=\(A).

Motivated by the definition of cc, we introduced in Salzano and
Schonmann (1997) the following similar notion:

Partial Convergence (pc). For any AZVG , !A
t O (1&;(A)) $<

+;(A) &r , as t � �.

We define by s6cc (for survival with complete convergence) the
property that \(*)>0 and cc holds. Similarly, we define r6pc (for
``recurrence with partial convergence'') as the property that pc holds and
;(*)>0.

Monotone Increasing Property. A property of the contact pro-
cess is said to be monotone increasing when both of the following hold.

(i) If the property holds for the contact process on a graph G # G at
some *, then it also holds for the same graph for all *$>*.
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(ii) If the property holds for the contact process on some subgraph
G0 # G of some graph G # G at some value of *, then it also holds for G at
the same *.

Collage of Graphs. Suppose that G1 ,..., Gn # G are disjoint graphs.
We say that G # G is a collage of G1 ,..., Gn if the following conditions are
satisfied:

(i) The set of vertices of G is VG=(� i=1,..., n VGi
) _ V0 , where V0 is

a finite set.

(ii) The set of edges of G is (�n
i=1 EGi

) _ E0 , where E0 is a finite set.

The statements (A) and (B) below are part of Theorem 2 of Salzano
and Schonmann (1997). The statement (C) is Theorem 2.1.1 of Salzano and
Schonmann (1999), but its proof can be found in a less general form in
Salzano and Schonmann (1997).

(A) The property r6pc is monotone increasing.

(B) Having cc is equivalent to having simultaneously both pc and
r=s.

(C) Suppose that G is a collage of G1 ,..., Gn , then for each value of
*>0 the condition r=s holds for G if and only if it holds for each one of
the graphs G1 ,..., Gn .

3. RESULTS

We will give act example of a tree in G on which, as * increases, cc
alternates between holding and failing infinitely many times.

For each positive integer l, define T2, l as the tree given by the rule that
for n=0, 1, 2,... the vertices at distance nl from the origin have degree three
and all the other vertices have degree two. Notice that the tree T2, 1 is the
same as the homogeneous tree T2 . To define T+

2, l , remove one edge con-
nected to the origin of T2, l and call T+

2, l the connected component contain-
ing the origin.

For any positive integer l, the tree T2, l has:

0<*s(T2, l )<*r(T2, l )<*c(Z) (3.1)

The second inequality comes from Stacey (1996). The third one comes
from Aizenman and Grimmett (1991) once we observe that T2, l has a sub-
graph, Z(l ), constructed as follows. Label each vertex of Z according to its
distance to the origin and for each integer k add a new vertex and a new
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edge connecting it to the vertex kl in Z. The same arguments used in the
proof of Theorem 4 of Salzano and Schonmann (1997) show that:

*s(T
+
2, l )=*s(T2, l ) and *r(T2, l )=*r(T2, l )

Also arguments similar to those used for the homogeneous trees [see
Morrow, Schinazi and Zhang (1994) and Zhang (1996) or Salzano and
Schonmann (1998)] give

\T
+
2, l

(*s(T2, l ))=0 and ;T
+
2, l

(*r(T2, l ))=0

To construct the tree with infinitely many transitions, we will choose
a suitable sequence [li ]i=1, 2,... . The tree T (l1 , l2 ,...) is then constructed as
follows. Start with Z+, label each of its sites according to its distance to the
origin. For each positive k add an edge connecting the site �k

i=1 li to the
root of a copy of T+

2, lk
.

Define Gl to be the set of all trees with vertices of degree either two or
three, with no infinite chains of vertices of degree 2 and where the distance
between any two vertices of degree three is at least l. Let *� (l )=inf[*s(G) :
G # Gl ]. Clearly *� (l )�*s(T2, l ) for any l, since T+

2, l # Gl .
The main technical task in this paper will be the proof of the following:

Lemma 1. liml � � *� (l )=*c(Z).

This lemma, and (3.1) assures us that we can take l1<l2<l3< } } }
such that the following is satisfied:

*s(T2, l1
)<*r(T2, l1

)<*� (l2)�*s(T2, l2
)<*r(T2, l2

)<*� (l3)� } } } <*c(Z)

(3.2)

Of course, the choice of [li ]i=1, 2,... can be made so that li+1 is a multiple
of li , for i=1, 2,... .

Theorem. Suppose that l1 , l2 ,... are such that (3.2) is satisfied. Then
for the contact process on T (l1 , l2 ,...) we have:

(a) cc does not hold in (*s(T2, lj
), *r(T2, lj

)], j=1, 2,...

(b) s6cc holds in (*r(T2, lj
), *� (l j+1)), j=1, 2,...

Moreover, if the sequence [li ] i=1, 2,... is such that l i+1 is a multiple of li , for
i=1, 2,..., then s6cc holds in (*r(T2, lj

), *s(T2, lj+1
)].

Remark. We conjecture, but have not been able to prove that
*� (l )=*s(T2, l ) for all positive integer l.
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4. PROOFS

Proof of the Theorem. In order to prove (a), let * # (*s(T2, lj
),

*r(T2, lj
)], for some j. In this interval we know that the contact process on

T+
2, lj

does not satisfy r=s. The tree T (ll , l2 ,...) is a collage of T+
2, lj

and
another tree. Since the first one does not satisfies r=s, by (C), the same
happens to T (l1 , l2 ,...). It follows from (B) that in this case T (l1 , l2 ,...) does
not satisfy cc.

For (b), fix * # (*r(T2, lj
), *� (l j+1)), for some j. Notice that T (l1 , l2 ,...) is

a collage of T+
2, l1

,..., T+
2, lj

and T (l j+1 , l j+2 ,...). For such values of * we have
that the process on T (lj+1 , l j+2 ,...) dies out since T (lj+1 , lj+2 ,...) # Glj+1

and
*<*� (lj+1). The contact process on each T+

2, li
, i=1,..., j satisfies s6cc since

*>*r(T2, li
) (same proof as in Zhang (1996) or Salzano and Schonmann

(1998)). The process on a collage of a finite number of trees where the pro-
cess dies out in some of them and in the others satisfies s6cc, also satisfies
s6cc. For this, combine (A) with (B) and (C). Thus, the contact process
on T (l1 , l2 ,...) satisfies s6cc.

In the case li+1 is a multiple of l i , for i=1, 2,... then T (lj+1 , l j+2 ,...)
is a subgraph of T2, lj+1

, and hence the contact process on T (lj+1 , lj+2 ,...)
dies out when *�*s(T2, lj+1

). So, the proof of (b) also gives the final claim
in the theorem. K

Proof of Lemma 1. Fix *<*c(Z) and let G # Gl . We want to show
the extinction of the contact process on G when l is large.

We will compare the contact process (!0
t )t�0 on G to a process (!� 0

t )t�0

where the states of (!� 0
t )t�0 are finite collections of particles on G. Each par-

ticle has a type and there is no more than one particle of each type in each
site.

Let V(3) be the set of vertices of G of degree three. Particles of each
type have a site in V(3) they call their home.

Particles of different type evolve as independent contact processes
unless a particle tries to infect a site y # V(3) different from its home. In this
case, a particle with a type still not used is created at y. At time 0 the pro-
cess (!� x

t )t�0 has just one particle at x, of type 0 and it has x as its home.
Note that

!0
t �!� 0

t , in the sense that: \x # VG , \t�0

!0
t (x)=1 O !� 0

t has at least one particle at x

To each type of particle we associate a generation number. Particles of
type 0 have generation number 0. When a particle of a type which is of
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generation n creates a new type of particle, this new type of particle is said
to be of generation n+1. Let Nk be the number of types of particles of
generation k ever created.

Given x # V(3), let +x be the expected number of types of particles of
generation 1 created in the process (!� x

t )t�0 .
Set

+(G)= sup
x # V (3)

+x

Since it is clear that the multi-valued process (!� x
t )t�0 cannot survive

forever restricted to a finite set of vertices, in the event of survival, infinitely
many different types of particles must be created. But the next result will
show that this is not the case when *<*c(Z).

Clearly

E(Nk | Nk&1)�+Nk&1

So, E(Nk)�+k. Using the Lemma 2 below, we can take l large enough so
that +<1. Therefore the number of types of particles ever created will be
a.s. finite. K

In the proof of the lemmas below, we will use several well-known
exponential estimates for the sub-critical contact process [see Liggett
(1985)]. For later reference we recall them now. Suppose *<*c(Z), then
for some positive finite constants c1 , and c2 ,

(a) P(!0
Z; t{<)�c1 exp[&c2 t].

(b) P((!0
Z; t)t�0 reaches the site k)�c1 exp[&c2k].

(c) P(inf !Z+

Z; t�exp[c2 t] for some t�t0)�c1 exp[&c2 t0].

Lemma 2. Suppose *<*c(Z). Then liml � � supG # Gl
+(G)=0.

Proof of Lemma 2. Given G # Gl and x # V(3), we define the star
centered at x, Sx , as the maximal connected subgraph of G which has x as
the only vertex of V(3). The tips of Sx are the vertices of this subgraph
which have degree one in Sx . The set of tips of Sx will be denoted by Tx .

Note that, by conditioning on the time the sites in Tx are infected, one
obtains

+x=* :
y # Tx

E \|
�

0
1[!x

Sx ; t( y)=1] dt+ (4.1)
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Also, for y # Tx , using self-duality and (b),

E |
l

0
1[!x

Sx ; t( y)=1] dt�E |
l

0
1[(! y

Sx ; s)s�0 reaches x] dt�(c1 l ) exp[&c2 l] (4.2)

Let S be the tree in which one vertex, the root, has degree three and
all other vertices have degree two.

If we think of Sx as a subgraph of S, Lemma 3 below gives:

E |
�

l
1[!x

Sx ; t( y)=1] dt�E |
�

l
1[!S

S; t( y)=1] dt�|
�

l
c3 exp[&c4 t� log t] dt

(4.3)

The lemma follows from (4.1), (4.2) and (4.3).

Lemma 3. Suppose *<*c(Z). Then there are positive finite con-
stants c3 and c4 such that for every vertex y of S and t�0,

P(!S
S; t( y)=1)�c3 exp[&c4 t� log t]

Proof of Lemma 3. Let Hr be the set of the configurations in which
all vertices of S within distance r of 0 are vacant.

Set

T=sup[t : !S
S; t � Ht]

We will first argue that:

P(T>t)�c3 exp[&c4 t� log t] (4.4)

Let An be the event that if we start the contact process on S at time
(n&1) C log t from the configuration with all vertices occupied, then the
process will be in the set H2t at time nC log t. The events A1 , A2 ,... are
independent and for large enough C, so we have

P(An)�
1

1+3*
[P[(!Z+

Z, t)t�0 is contained in Z+ and at time C log t

the sites [0, 1,..., w2tx] are empty]]3�=

where =>0 does not depend on n since the left hand side of the first
inequality does not depend on n. It also does not depend on t by (c). The
term 1�(1+3*) is the probability that the particle that was at the center of
the star S at the initial time (n&1) C log t dies before infecting any
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neighboring vertex. The other part comes from the fact that discarding the
origin of the star, we can compare the process with three independent pro-
cesses in Z+, starting with Z+ full of particles and then further compare
each one of these with a process in Z.

Using the strong Markov property at the moment T $2t when the pro-
cess (!S

S; s)s�0 hits H2t and (b) and (c), we obtain:

P(T�t)�P(T $2t�t)+P(T $2t<T, T $2t<t)

�P(Ac
1 & Ac

2 & } } } & Ac
wt�C log tx)+c5 exp[&c6t]

�(1&=)[t�C log t]&1+c5 exp[&c6 t]

�c3 exp[&c4 t� log t]

Note now that if d( y, 0)<t, then our thesis follows immediately from
(4.4). Otherwise, using self-duality and thinking of Z+ as a subgraph of S,

P(!S
S, t( y)=1)�P((! y

Z+; s)s�0 reaches 0)+P(! y
Z+; t{<)

�c5 exp(&c6 d( y, 0))+c7 exp(&c8 t)

�c9 exp(&c10 t)

where we used (b) and (a). K
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